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Abstract. We consider a class of random geometric series with an underlying tree-like structure
that has a number of applications in statistical physics. Convergence criteria for these series are
discussed and consistency with different criteria known to hold in the one-dimensional limit is
established. A multiplicative, two-component model of percolation on a Cayley tree is defined
and analysed. The order of the percolation transition and certain critical exponents are altered
compared to conventional bond percolation.

Consider a (quenched) set of positive, random variables{Xj } that are independent and
identically distributed (iid) and generated by a probability densityρ(x). The following
infinite, random geometric series arises naturally in a number of one-dimensional problems
encountered in statistical physics and, as such, has been widely studied [1–4],

R = X1+X1X2+X1X2X3+ · · · . (1)

The following theorem concerning the random variableR is given by Kesten [5–7].

Theorem 1. (i) The sequenceR (equation (1)) converges with probability one if and only if
〈ln x〉 < 0, whenR is a random variable with a well defined distribution. (ii) The sequence
R (equation (1)) diverges with probability one if and only if〈ln x〉 > 0. The average is
defined with respect to the densityρ(x).

Equation (1) is interesting because the multiplicative and correlated nature of the series
leads to critical behaviour representative of a phase transition. To put this into a more
general context, many physical processes have been studied in terms of sums of random
variables [7]:

SN =
N∑
i=1

Yi. (2)

For example, if{Yi} is a set of iid variables generated by a probability densityφ(y), then
we have a random-walk model of diffusion (the laws of large numbers). Assuming that
φ(y) decays for large arguments asy−1−µ then, if µ > 2, the limiting distribution for
SN (when suitably scaled) is Gaussian (central limit theorem) and the diffusion is termed
conventional. If, on the other hand,φ(y) is sufficiently broad (0< µ < 2), the limiting
distribution for SN (a Levy stable law of indexµ) is less generic, in that the summation
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tends to be dominated by its largest term, leading to anomalous diffusion [7]. Less well
understood is what happens when the variables{Yi} are correlated in some way, as in
equation (1). Weak correlations lead to an effective renormalization of the above picture,
but strong correlations can lead to qualitatively different (even critical) behaviour. This
is manifest in the convergence or otherwise of equation (1). A biased random walk in
one dimension is persistent or transient, when the bias field is spatially random, according
to the convergence or otherwise of a series identical to equation (1) [1, 2, 5, 6]. Another
problem which maps onto equation (1) is that of the typical escape time for a particle in a
trapping region undergoing a succession of thermally activated jumps [7]. Individual terms
in equation (1) have also been studied as multiplicative cascade models of turbulence, and
give rise to random measures which are multifractals [8].

Motivated by statistical physics, the aim of this letter is to discuss the generalization
of equation (1) from one dimension to an arbitrary tree, in the following sense. Consider
an infinite tree0 (see figure 1). With each branchj of the tree associate an independent
and identically distributed (iid) random variableXj > 0 generated by a probability density
ρ(x). Once generated, the set{Xj } is fixed. For a given branchi, construct the unique
shortest path joining it to the origin. Using the values of{Xj } for all the branches on the
path, construct the following random product which is specific to branchi,

Ri = X1X2X3 . . . Xi. (3)

Now form the sum of theRi over all the branches of0, which will generate an infinite,
random geometric series,

R =
∑
0

Ri. (4)

The one-dimensional limit (equation (1)) corresponds to the special case where the tree
is regular with branching numberz and z = 1. The question as to the convergence or
otherwise of equation (4) has been discussed by Lyons and co-workers in the context of
the persistence or recurrence of random walks on trees [9, 10], and by the present authors
in relation to demonstrating a localization–delocalization transition for drift diffusion in a
quenched random velocity field [11]. Below we present the relevant theorem (which we
suspect is not widely known) in its most general setting. The proof, based on network flow
theory, is long and technical and is omitted.

For an arbitrary tree one can define thebranching numberbr(0) according to

br(0) = inf

{
λ > 0; inf

5

∑
i∈5

λ−|i| = 0

}
where5 is a cutset, i.e. a finite set of vertices excluding the origin such that every path
from the origin to infinity intersects5 and such that there is no pairi, j ∈ 5 with i < j .
A special example of a cutset is thenth generationSn, n > 1. Here br(0) is a measure of
the average number of branches per vertex of0. It is less than or equal to the so-called
growth rate

gr(0) = lim
n→∞ inf61/n

n

where6n is the number of branches in thenth generation (see figure 1). For a regular tree
of branching numberz, br(0) = gr(0) = z. Define the functionβ(σ) as follows (where
σ > 0):

β(σ) = 〈xσ 〉 =
∫ ∞

0
ρ(x)xσ dx. (5)
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Figure 1. A locally finite tree0 indicating successive generations defined with respect to the
origin O.

Introduce the indexσ ∗ (06 σ ∗ 6 1) according to the property

β(σ ∗) = min
06σ61

β(σ). (6)

Note thatσ ∗ depends only upon the probability densityρ(x). Assume (initially) thatρ(x)
is such thatX is positive definite with probability one. We have

Theorem 2. (i) The sequenceR (equation (4)) converges with probability one if and only
if gr(0)β(σ ∗) < 1, whenR is a random variable with a well defined distribution. (ii) The
sequenceR (equation (4)) diverges with probability one if and only if br(0)β(σ ∗) > 1.

If ρ(x) is such thatX is zero with positive probability, then theorem 2 still holds provided
the statement ‘with probability one’ in case (ii) is replaced by the statement ‘with positive
probability’. This subtle distinction will be important in what follows.

We now demonstrate that theorem 1 and theorem 2 are equivalent (or at least consistent)
in one dimension. This is not immediately obvious and, to the best of our knowledge, has
not been discussed before. First, note from equation (5) thatβ(σ) is a convex function,

∂2β(σ)

∂σ 2
=
∫ ∞

0
ρ(x)(ln x)2xσ dx > 0. (7)

Second, note thatβ(0) = 1. Sinceβ(σ) is convex, it follows that if∂β(0)/∂σ > 0, then
σ ∗ = 0 andβ(σ ∗) = 1. If, on the other hand,∂β(0)/∂σ < 0, then there must be a value of
σ > 0 for whichβ(σ) < 1; i.e. σ ∗ > 0 andβ(σ ∗) < 1. From equation (5) we obtain

∂β(0)

∂σ
=
∫ ∞

0
ρ(x) ln x dx = 〈ln x〉. (8)

Thus if 〈ln x〉 < 0, thenβ(σ ∗) < 1 and the series is convergent with probability one
according to both theorems. If〈ln x〉 > 0 then, according to theorem 1, the series is
divergent with probability one. According to theorem 2,β(σ ∗) = 1 and the series diverges
with probability one for anyz = 1 + ε for which ε > 0. If z = 1 then theorem 2 is
indeterminate. Thus theorem 2 is consistent with theorem 1 in one dimension but theorem 1
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is stronger. However, theorem 2 is more powerful in the sense that it is valid for any
z > 1. Note that theorem 1 is only indeterminate when〈ln x〉 = 0, when theorem 2 is also
indeterminate (forz = 1) since∂β(0)/∂σ = 0, σ ∗ = 0 andβ(σ ∗) = 1.

A simple example helps to illustrate the use of theorem 2. Consider a regular tree of
branching numberz and consider the case whereX is uniformly distributed on the interval
[0, L]. Then,

β(σ) = 1

L

∫ L

0
xσ dx = Lσ

σ + 1
.

There are three cases of interest.
(i) 0 < L 6 √e, for which σ ∗ = 1 andβ(σ ∗) = L/2 < 1. The series is convergent

with probability one ifz < 2/L and divergent with probability one ifz > 2/L. For z = 1,
the series is convergent with probability one.

(ii)
√
e < L < e, for which σ ∗ = (1/ lnL− 1) andβ(σ ∗) = e lnL/L < 1. The series

is convergent with probability one ifz < L/(e lnL) and divergent with probability one if
z > L/(e lnL). For z = 1, the series is convergent with probability one.

(iii) L > e, for which σ ∗ = 0 andβ(σ ∗) = 1. The series is divergent with probability
one for allz > 1. For z = 1, theorem 2 is indeterminate.
It is readily checked that the conclusions reached forz = 1 are consistent with those reached
using theorem 1. In addition, theorem 1 tells us that the series is divergent with probability
one forL > e.

We shall now consider a more interesting example; a choice forρ(x) that maps
equation (4) onto the problem of conventional bond percolation on a tree. Consider a
regular Cayley tree withz > 1 (the casez = 1 is slightly different but can be handled
similarly). It will prove useful to consider the Laplace transform of the probability density
9(r) of the random variableR (assuming it exists),

M(s) =
∫ ∞

0
e−sr9(r) dr M(0) = 1. (9)

For a regular tree, the well defined recursive structure of the problem means thatM(s)

obeys the following integral equation [11],

M(s) =
∫ ∞

0
ρ(x)e−sx [M(sx)]z dx. (10)

Consider now the densityρ(x) = (1− p)δ(x − ε) + pδ(x − 1), 0 6 p 6 1, ε < 1, for
which σ ∗ = 1, β(σ ∗) = ε(1− p)+ p, and equation (10) reduces to the following form,

M(s) = (1− p)e−sεM(sε)z + pe−sM(s)z. (11)

Two values ofX are permitted,X = ε (with probability 1−p) andX = 1 (with probability
p). Suppose thatε is chosen to be strictly zero (β(σ ∗) = p). Those branches of0 that
(i) have a value ofX = 1 and (ii) are connected to the origin by an unbroken sequence of
branches all withX = 1 have a value ofRi = 1; all other branches haveRi = 0. ThusR
(equation (4)) represents the size (or mass) of the cluster connected to the origin. This is the
classic problem of bond percolation on a Cayley tree, and its well known behaviour [8] can
be rederived quickly and elegantly from a new perspective. Theorem 2 tells us immediately
that R is finite with probability one (no infinite cluster exists) ifp < 1/z. If p > 1/z
thenR is infinite with positive probability, sinceX is zero with positive probability (this
means an infinite cluster exists for certain realizations, but not for others). This behaviour
is indicative of a second-order (continuous) phase transition atp = pc = 1/z, where the
probability that the origin is linked to an infinite cluster is the order parameter. One can
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show from equation (11) that the moments of9(r) diverge as one approaches the percolation
threshold from below as

Mn ≡
∫ ∞

0
rn9(r) dr ≡ (−1)n

dnM(0)

dsn
∼ (pc− p)−2n+1. (12)

Using arguments from scaling theory it follows that the asymptotic form for9(r) can be
written as

9(r) ∼ r−τF (rσ (pc− p)) (13)

whereF is some function and the critical exponents are given byσ = 1/2 andτ = 3/2
[8]. When p = pc the density9(r) still exits (is normalizable). For completeness, the
exponent which governs the divergence of the first moment is given byγ = 1.

Mathematically one can ask what happens in the above example whenε is strictly
positive? Every branch on the tree now contributes to equation (4). The threshold for the
convergence of equation (4) shifts such that

pc = 1

z

1− zε
1− ε 0< ε < z−1 (14)

andpc = 0 for ε > z−1. For p < pc the mass of the cluster (R) is finite with probability
one, as before. However, forp > pc the mass of the cluster is infinite with probability one,
not just with positive probability as before, sinceX is now positive definite with probability
one. This means the phase transition atp = pc is now first order (discontinuous) rather
than second order. Whenp < pc we can still define the same exponents as above. From
equation (11) one deduces, forpc− p � ε,

Mn ∼ (pc− p)−n. (15)

The mean cluster mass still diverges at the critical point with the same critical exponent
γ ′ = 1, but the other exponents are different. For large arguments,

9(r) ∼ r−τ ′F ′(rσ ′(pc − p)) (16)

where σ ′ = 1 and τ ′ = 1. Whenp = pc the density9(r) no longer exists (is not
normalizable). This is a consequence of the transition being first order rather than second
order. The scaling form will no longer be valid ifpc− p ∼ ε.

One can interpret the above choice forρ(x) as defininga generalized two-component,
multiplicative percolation process. Does such a process have any direct physical
interpretation? One example, an idealization of a number of physical problems (see e.g.
[11]), is as follows. Suppose one fixes the concentration of some species at the root of an
infinite tree and invasion percolation along the tree’s branches takes place via drift diffusion.
The (dimensionless) drift velocities (towards the origin) on each branch are randomly chosen
to be either zero (with probabilityp) or ln 1/ε (with probability 1− p). Those links with
velocity ln 1/ε act as bottlenecks to the invasion process; whenε = 0 these bottlenecks
are impenetrable. A relevant question is: under what conditions (once steady state has
been attained) will the total mass of invading species be infinite? This is an extension to
the conventional percolation idea of connecting to infinity. The problem can be mapped
(essentially) onto a series like equation (4) [11]. Ifp < pc the invading mass will be finite
for any realization. Ifp > pc then, providedε > 0, the invading mass will be infinite for
any realization (first-order transition). However, ifε = 0, the invading mass will sometimes
be infinite and sometimes be finite (second-order transition), depending upon the particular
realization. The essential point is that impenetrable bottlenecks fundamentally affect the
invasion process (transition order, exponents etc) by altering the connectivity of the system.
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Alternative choices forρ(x) and generalizations to irregular trees can also be studied within
the above framework.

The above analysis applies only to tree structures; that is, graphs without loops. Attempts
to generalize to finite-dimensional, regular lattices meet with formidable mathematical
problems. For example, the above drift-diffusion process on a square lattice with random
velocities on each bond cannot be cast into the form of equation (4). There is an infinity
of distinct paths between a chosen origin and any other bond. New ideas are required to
solve such a model.
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